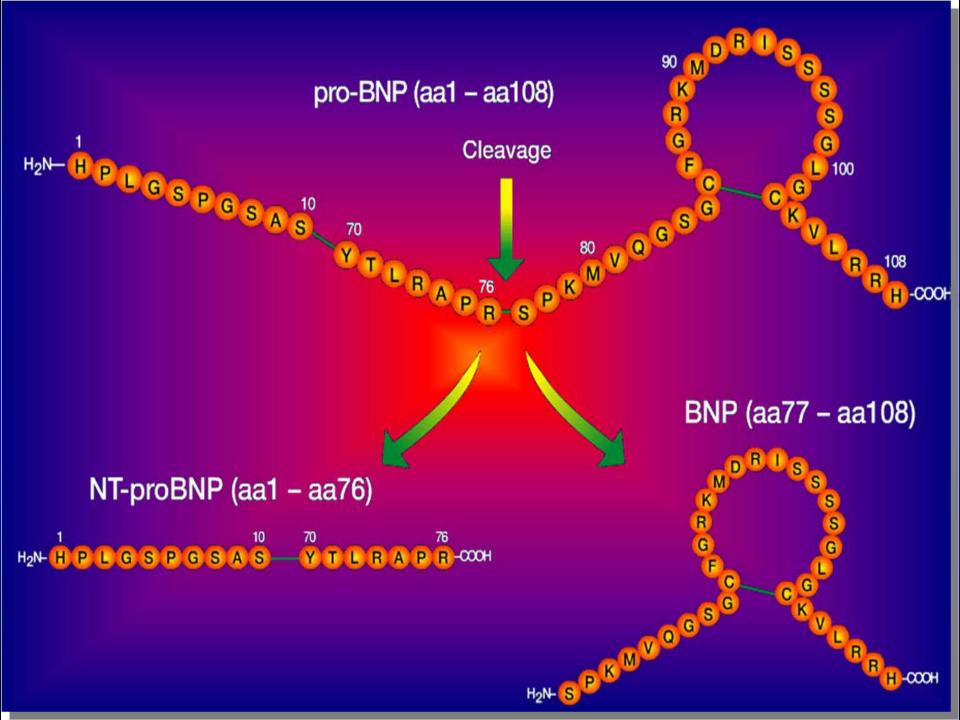
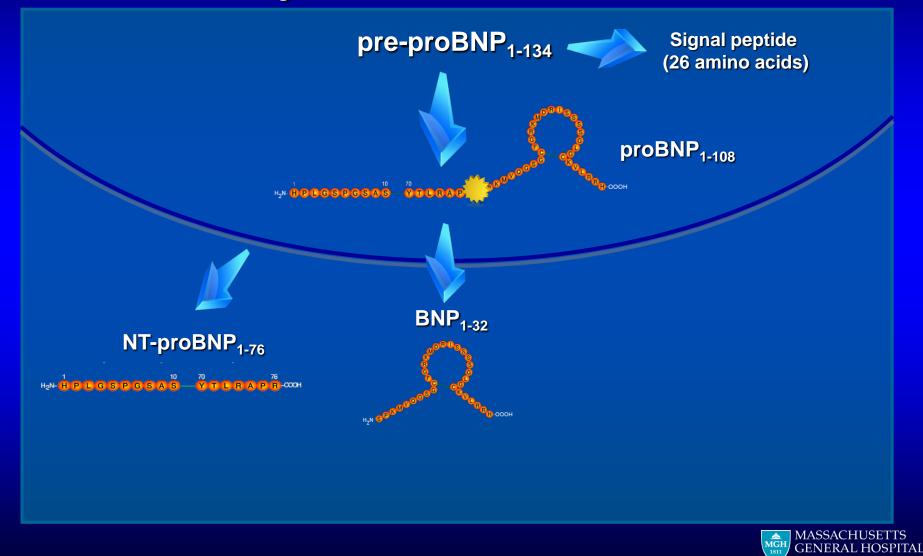
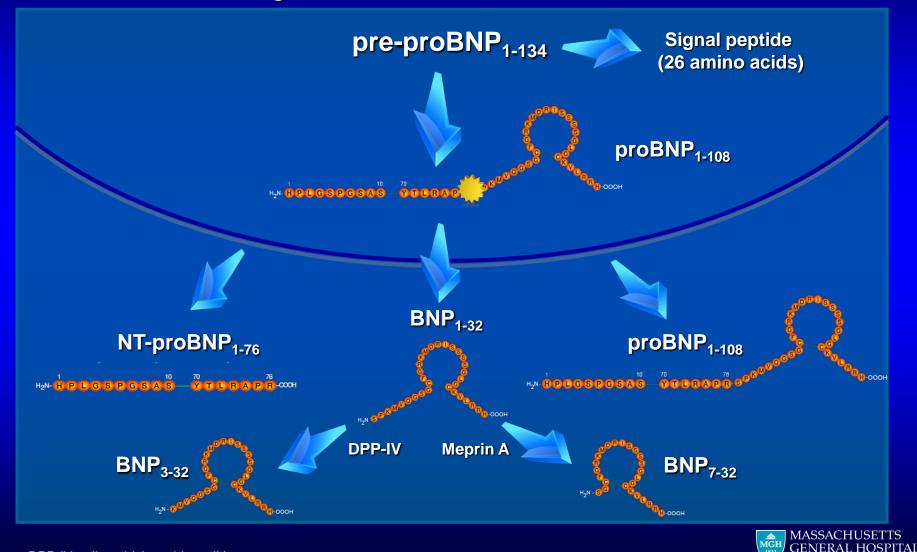

The clinical value of natriuretic peptide testing in heart failure



James L. Januzzi, Jr, MD, FACC, FESC Associate Professor of Medicine Harvard Medical School Roman W. DeSanctis Endowed Clinical Scholar Director, Cardiac ICU Massachusetts General Hospital


Disclaimer

 During this lecture will you not hear me suggest that we should stop thinking critically about our patients, put our stethoscopes away, or apply natriuretic peptide testing without thinking about every possibility.



Biology of the NP System Synthesis and Release

HEART CENTER

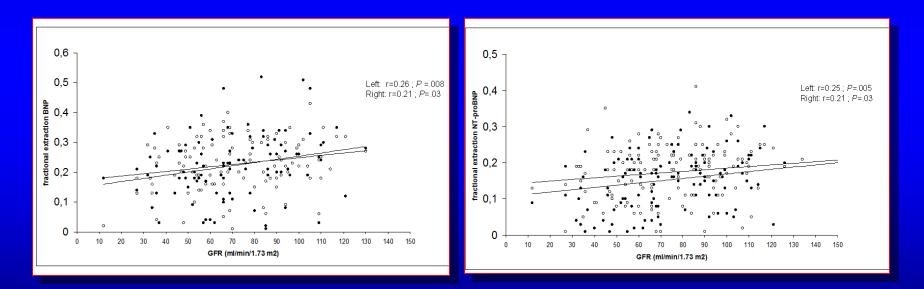
Biology of the NP System Synthesis and Release

HEART CENTER

Natriuretic Peptide Clearance

• BNP

NPR
Neutral endopeptidases
Renal excretion


NT-proBNP

Less well understood
Renal excretion partially responsible

Equal Renal Clearance of BNP and NT-proBNP

In simultaneously sampled renal artery and vein: NO DIFFERENCE BETWEEN CLEARANCE OF BNP AND NT-proBNP

van Kimmenade et al, JACC, 2009

Correlations of Natriuretic Peptides with Cardiac Structure and Function

- Left ventricle
 - Size
 - Systolic function
 - Diastolic function
- Right ventricle
 - SizeSystolic functio
- Atrial size and pressure

Valve disease

- Aortic
- Mitra
- Tricuspia
- Heart rhythm
- Ischemic heart disease
- Pericardial disease

Correlations of Natriuretic Peptides with Cardiac Structure and Function

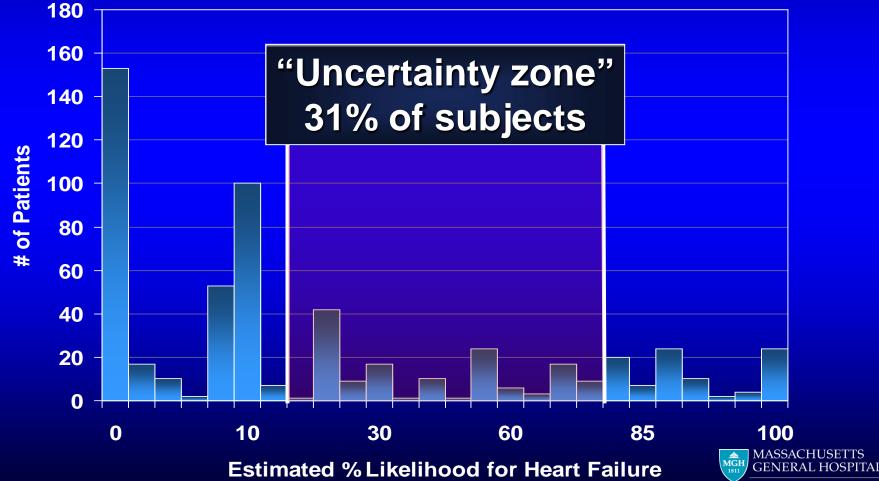
- Left ventricle
 - Size
 - Systolic function
 - Diastolic function
- Right ventricle
 - Size
 - Systolic function
- Atrial size and pressure

- Valve disease
 - Aortic
 - Mitral
 - Tricuspid
- Heart rhythm
- Ischemic heart disease
- Pericardial disease

How not to get burned by NP's: Know the Differential Diagnosis of an *Elevated* Natriuretic Peptide

- Unrecognized HF
- Prior HF
- LVH
- Valvular heart disease
- Atrial fibrillation
- Advancing age
- Myocarditis
- ACS
- Pulmonary hypertension
- Congenital heart disease

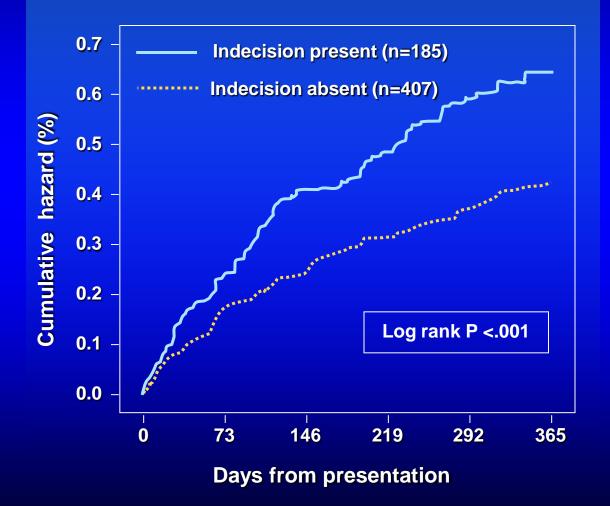
- Anemia
- Pulmonary embolism
- Cardiac surgery
- Sleep apnea
- Critical illness
- Sepsis
- Burns
- Renal failure
- Toxic-metabolic insults


Natriuretic Peptides: Major Clinical Utilities

- Acute patient evaluation
- Estimation of prognosis
- Monitoring HF therapy

Diagnostic Uncertainty is Common in Dyspnea Evaluation

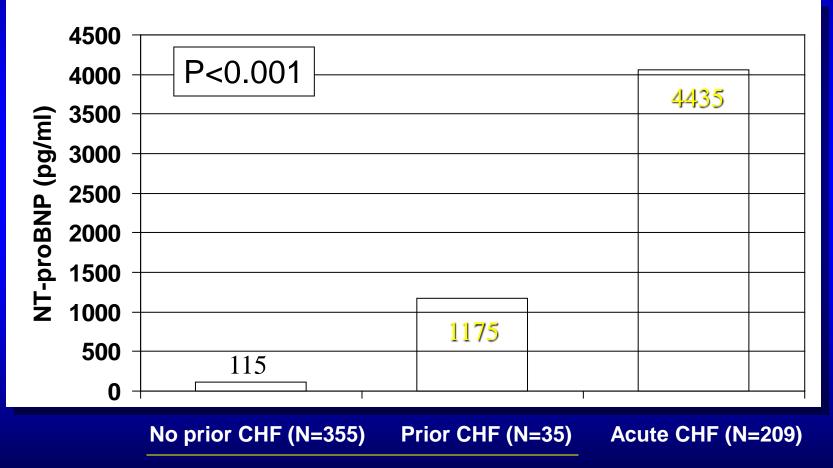
Following full evaluation, managing physician asked to provide an estimate from 0% to 100% for the likelihood for heart failure as the cause of dyspnea



HEART CENTER

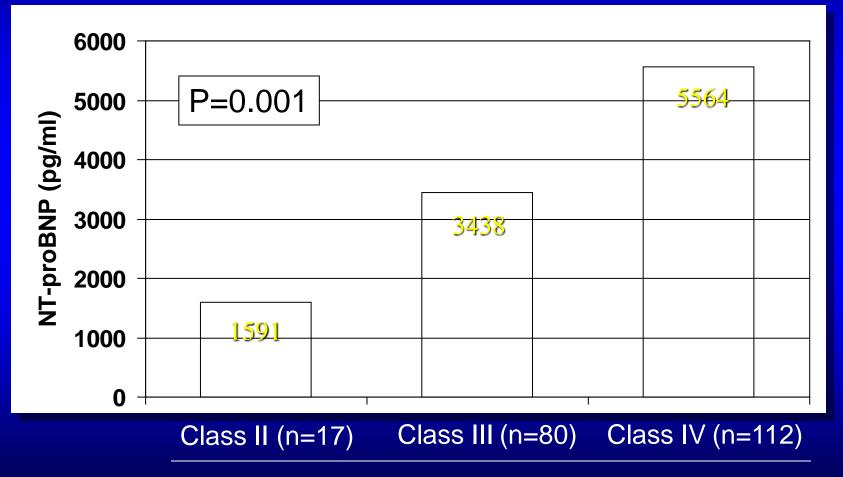
Green et al, Arch Int Medicine, 2008;168:741

Diagnostic Uncertainty is Associated with Poor Prognosis in Acute Dyspnea


31% of subjects in PRIDE were judged uncertainly by the managing physician

Their prognosis was significantly worse, with higher rates of death and re-hospitalization and longer lengths of stay!

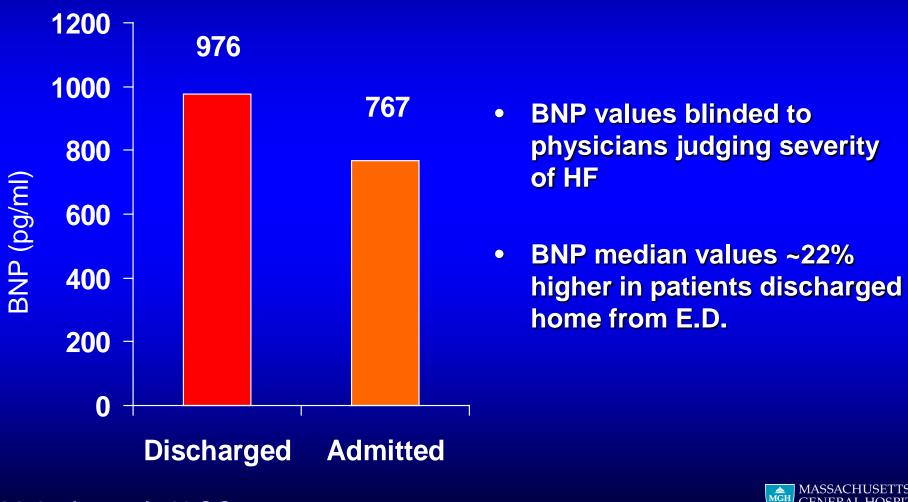
Green et al, Arch Int Medicine, 2008;168:741



Not acute CHF (N=390)

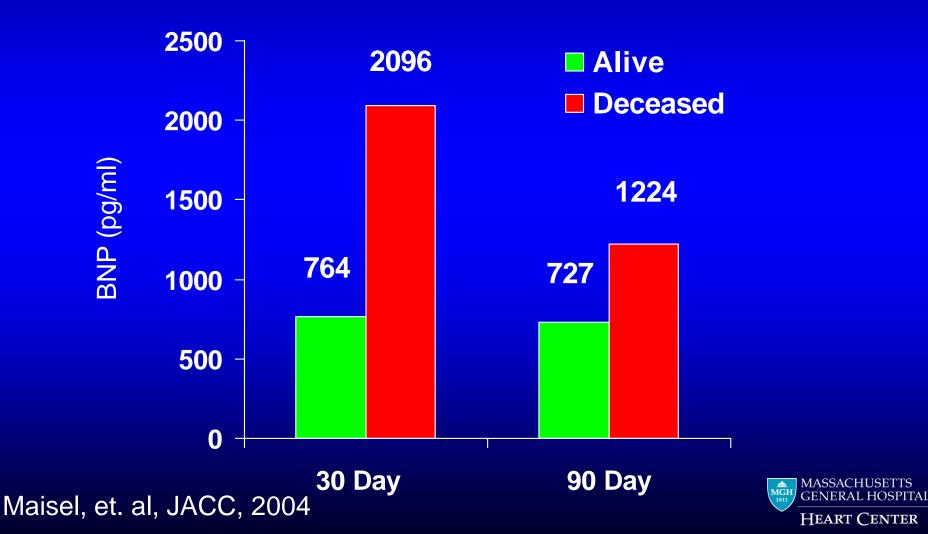
Januzzi et al, AJC 2005

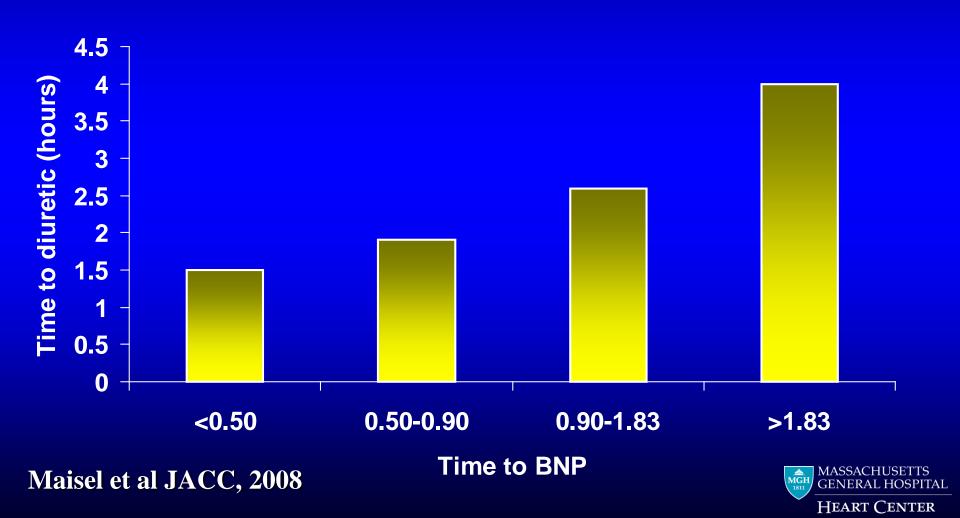
Januzzi et al, AJC 2005


Results: Predictors of HF

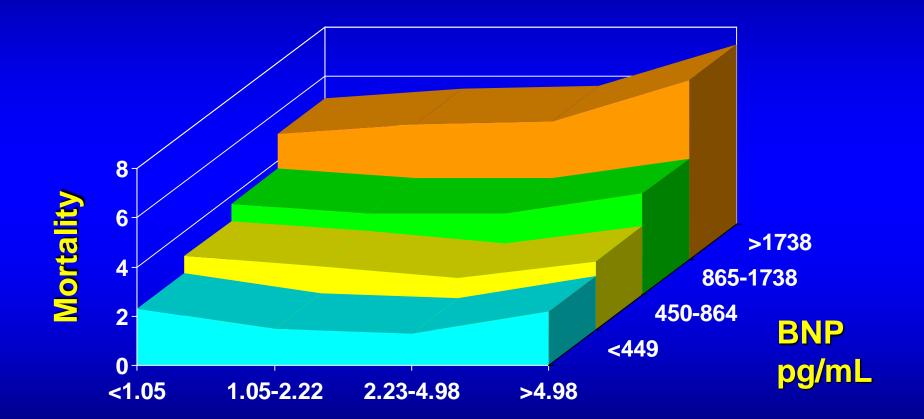
Predictor	Odds Ratio	95% Confidence Intervals	P value
Elevated NT-proBNP	44	21.0-91.0	<0.0001
Interstitial edema on chest X-ray	11	4.5-26.0	<0.0001
Orthopnea	9.6	4.0-23.0	<0.0001
Loop diuretic use at presentation	3.4	1.8-6.4	0.01
Rales on pulmonary examination	2.4	1.2-5.2	0.05
Age (per year)	1.03	1.01-1.05	0.01
Cough	0.43	0.23-0.83	0.05
Fever	0.17	0.05-0.50	0.03

Januzzi et al, AJC 2005


REDHOT Study: BNP Values & Patient Disposition

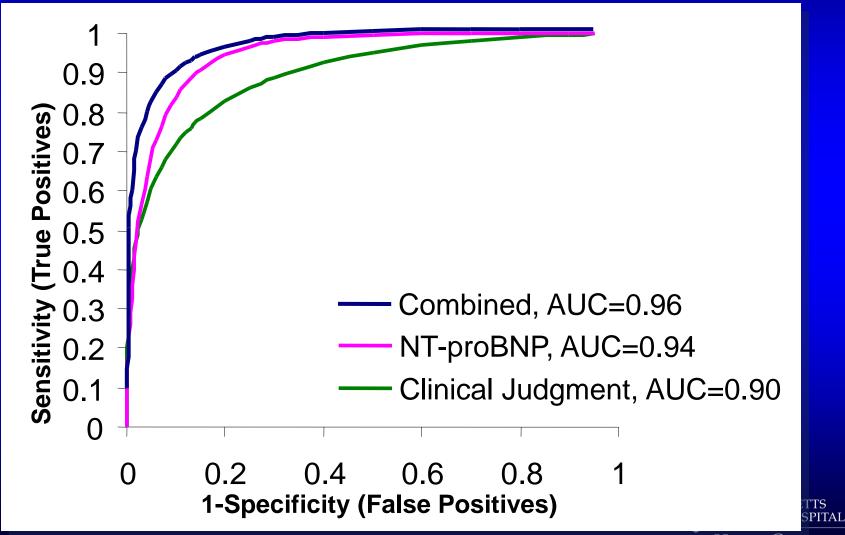

HEART CENTER

Maisel, et. al, JACC, 2004


REDHOT Study: Baseline BNP Values and Mortality

Delayed BNP Equals Delayed Treatment

Mortality vs. Quartiles of Diuretic Time & BNP Level



Time to Diuretic

Maisel et al JACC, 2008

HEART CENTER

Where does NT-proBNP help most? Data from the Canadian IMPROVE-CHF Study

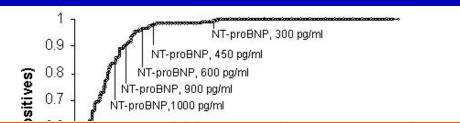
Although NT-proBNP added incremental information at both ends of the spectrum of heart failure likelihood...

Clinician impression	Model impression	Not HF	HF	% Appropriately Reclassified
Low prob (n=343)	LP (n=282)	276	6	(2.1)*
(Accuracy =89%)	IP (n=58)	30	28	48.3
	HP (n=3)	0	3	100
(e⊱r=n) dong tnl	LP (n=38)	37	1	97.3
	JP (n=77)	<u>25</u>	<u>52</u>	-
	HP (n=24)	0	<u>2</u> 4	100
High prob (n=91)	LP (n=0)	0	0	0
(Accuracy =95%)	IP (n=18)	4	14	22.2
	HP (n=73)	1	72	(1.4)*

Steinhart, et al, JACC, 2009.

Where does NT-proBNP help most? Data from the Canadian IMPROVE-CHF Study

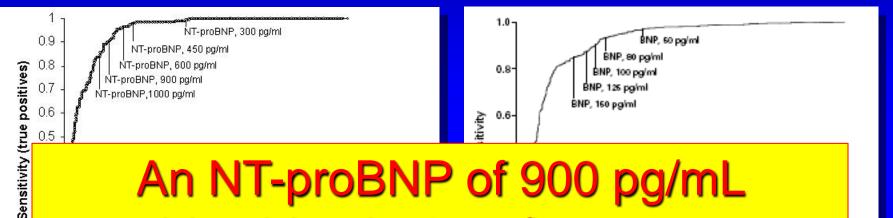
Net reclassification improvement (NRI) and integrated discrimination improvement (IDI) analyses suggested the biggest "bang" was in the indecision zone...


Clinician impression	Model impression	Not HF	HF	% Appropriately Reclassified
Low prob (n=343)	LP (n=282)	276	6	(2.1)*
(Accuracy =89%)	IP (n=58)	30	<u>28</u>	48.3
	HP (n=3)	0	3	100
Int prob (n=139)	LP (n=38)	37	1	97.3
	IP (n=77)	25	52	-
	HP (n=24)	0	24	100
High prob (n=91)	LP (n=0)	0	0	0
(Accuracy = 95%)	IP (n=18)	4	- 14	22.2
(Accuracy =95%)	HP (n=73)	1	72	(1.4)*

Steinhart, et al, JACC, 2009.

What is the best single cut point?

Cut Point	Sensitivity	Specificity	Positive Predictive Value	Negative Predictive Value	Accuracy
300 pg/ml	99%	68%	62%	99%	79%
450 pg/ml	98%	76%	68%	99%	83%
600 pg/ml	96%	81%	73%	97%	86%
900 pg/ml	90%	85%	76%	94%	87%
1000 pg/ml	87%	86%	78%	91%	87%


450 pg/ml	98%	76%	68%	99%	83%
600 pg/ml	96%	81%	73%	97%	86%
900 pg/ml	90%	85%	76%	94%	87%
1000 pg/ml	87%	86%	78%	91%	87%

Looks an awful lot like BNP...

PRIDE

Breathing Not Properly

An NT-proBNP of 900 pg/mL provides identical performance to a BNP of 100 pg/mL

Cut Point	Sensitivity	Specificity	Predictive Value	Predictive Value	Accuracy
300 pg/ml	99%	68%	62%	99%	79%
450 pg/ml	98%	76%	68%	99%	83%
600 pg <i>i</i> ml	96%	81%	73%	97%	86%
900 pg/ml 90%		85%	76%	94%	87%
1000 pg/ml	87%	86%	78%	91%	87%

BNP	SENSITIVITY	SPECIFICITY	VALUE	VALUE	ACCURACY		
pg/ml		(96 percent confidence interval)					
50	97 (96-96)	62 (69-66)	71 (68-74)	96 (94-97)	79		
80	93 (91_96)	74 (70-77)	77 (76-80)	92 (89-94)	83		
100	90 (88-92)	76 (73-79)	79 (76-81)	89 (87 - 91)	83		
125	87 (85-90)	79 (76-82)	80 (78-83)	87 (84-89)	83		
160	85 (82-88)	83 (80-85)	83 (80-86)	85 (83-86)	84		

Is there anything to do to improve the comparatively low PPV of NP's?

PRIDE

Breathing Not Properly

Cut Point Sensitivity Specificity Predictive Value Predictive Value Predictive Value 300 pg/ml 99% 68% 62% 99% 97% 90 93 (91-96) 74 (70-77) 77 (75-80) 92 (89-94) 90 (98-96) 92 (89-94) 90 (98-92) 76 (73-79) 79 (78-81) 89 (93-94) 90 (99 (98-96) 93 (91-96) 74 (70-77) 77 (75-80) 92 (89-94) 90 (98-92) 76 (73-79) 79 (78-81) 89 (93-96) 93 (91-96) 79 (78-81) 89 (93-96) 83 (80-86) 83 (80-86) 83 (80-86) 83 (80-86) 83 (80-86) 83 (80-86) 83 (80-86) 83 (80-86) 83 (80-86) 83 (80-86) 83 (80-86) 83	1 0.9 0.8 0.7 0.7 0.6 0.5	A I	iroBNF INP, 90	10 Th	300 pg/ml	ć	- 1.0 0.8- 2.0 4.0 5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	{	BNP,	P, 80 pg/ml 100 pg/ml 8 pg/ml	0 pg/ml		
300 pg/ml 99% 68% 62% 99% 99% 99% 99% 99% 99% 99% 99% 99% 99% 99% 99% 99% 99% 99% 99% 99% 99% 99% 600 pg/ml 96% 81% 73% 97% 97% 80 93 (91-96) 82 (59-66) 71 (68-74) 98 (94-97) 77 (75-80) 92 (89-94) 93 (80-85) 83 (80-85)	Cut Point	Sensitiv	ity	Specificity		The second s	C (S)		_	_			NEGATIVE PREDICTIVE
450 pg/ml 98% 76% 68% 99% 60% 91% 60% 91% 60% 91% 60% 91% 60% 91% 60% 91% 60% 91% 60% 91% 60% 91% 60% 91% 60% 91% 60% 91% 60% 91% 60% 91% 60% 91% 60% 91% 60% 91% 72% 91% 91% 60% 93 (91-96) 74 (70-77) 77 (75-80) 92 (88-94) 92 (88-94) 92 (88-94) 90 (98-96) 76 (78-81) 89 (94-97) 99 (78-81) 89 (87-91) 99 (88-92) 76 (78-81) 99 (98-96) 91 (98-96) 76 (78-81) 99 (98-96) 91 (98-96) 91 (98-96) 91 (98-96) 91 (98-96) 91 (98-96) 91 (98-96) 92 (88-94) 90 (78-82) 90 (78-82) 90 (78-82) 90 (78-82) 90 (78-82) 90 (78-82) 90 (78-82) 90 (78-82) 90 (78-82) 90 (78-82) 90 (78-82) 90 (78-82) 90 (78-82) 90 (78-82) 90 (78-82) 90 (78-82)	300 pg/ml	99%		68%	62%	99%	BI	NP	SENSIT	NITY S			
600 pg/ml 96% 81% 73% 97% 60 97 (98-98) 62 (59-66) 71 (68-74) 98 (94-97) 900 pg/ml 90% 85% 76% 94% 100 90 (88-92) 76 (73-79) 77 (75-80) 92 (89-94) 1000 pg/ml 97% 86% 78% 91% 100 90 (88-92) 76 (73-79) 79 (76-81) 89 (87-91) 1000 pg/ml 87% 86% 78% 91% 125 87 (86-90) 79 (76-82) 80 (78-83) 87 (84-89) 300 pg/ml 99% 68% 62% 99% 79% 150 85 (82-88) 83 (80-86) 83 (80-86) 85 (83-86) 300 pg/ml 99% 68% 62% 99% 79% 100 96 (82-86) 71 (68-74) 96 (94-97) 79 (78-83) 87 (84-89) 900 pg/ml 99% 68% 99% 79% 86% 90 (94-97) 79 (78-82) 80 (78-86) 85 (83-86) 85 (83-86) 85 (83-86) 85 (83-86) 85 (83-86) 85 (83-86)		98%		76%	68%	99%	P9	/ml			195 perce	ent confidence	e interval)
Solution Solution				10.000				50	97 (96-	-98) 6	2 (69–66)	71 (68-74)	96 (94-97)
1000 pg/ml 87% 86% 78% 91% 125 87 (85-90) 79 (76-82) 90 (78-83) 87 (84-89) 1000 pg/ml 99% 68% 62% 99% 79% 300 pg/ml 99% 68% 62% 99% 79% 450 pg/ml 98% 76% 68% 99% 83% 600 pg/ml 96% 81% 73% 97% 86% 900 pg/ml 90% 76% 94% 87% 97% 100 pg/ml 96% 81% 73% 97% 86% 900 pg/ml 90% 76% 94% 87% 100 90 (88-92) 76 (75-78) 92 (89-94) 83	600 pg/mi	96%		81%	(39)	97%		80	<u>93 (91-</u>	.86) 7	4 (70–77)	77 (75-80)	92 (89-94)
1000 pg/ml 87% 88% 78% 91% 000 pg/ml 99% 68% 62% 99% 79% 300 pg/ml 99% 68% 62% 99% 79% 450 pg/ml 98% 76% 68% 99% 83% 600 pg/ml 96% 81% 73% 97% 86% 900 pg/ml 96% 76% 94% 87% 150 85 (82-88) 83 (80-85) 85 (83-88) 900 pg/ml 98% 76% 68% 99% 83% 66% 92% 99% 79% 96% 91% 450 pg/ml (56 percent confidence interval) 450 pg/ml (56 percent confidence interval) 79 900 pg/ml 96% 81% 73% 97% 86% 93 (91-96) 74 (70-77) 77 (76-80) 92 (89-94) 83 900 pg/ml 90% 85% 76% 94% 87% 100 90 (88-92) 76 (73-78) 79 (78-81) 82 (87-91) 83	900 pg/ml	90%		85%	76%	94%	1	00	90 (88-	.92) 7	6 (73–79)	79 (76-81)	89 (87 - 91)
Solution Solution	1000 pg/ml	87%		86%	78%	91%							87 (84–89)
300 pg/ml 99% 68% 62% 99% 79% 450 pg/ml 98% 76% 68% 99% 79% 450 pg/ml 98% 76% 68% 99% 83% 600 pg/ml 96% 81% 73% 97% 86% 900 pg/ml 90% 85% 76% 94% 87%			15				1	60	86 (82-	-88) 8	3 (80–85)	83 (80-85)	85 (83-88)
450 pg/ml 98% 76% 68% 99% 83% 600 pg/ml 96% 81% 73% 97% 86% 900 pg/ml 90% 85% 76% 94% 87% 100 90 (88-92) 76 (73-79) 77 (76-80) 92 (89-94) 83 900 pg/ml 90% 85% 76% 94% 87% 100 90 (88-92) 76 (73-79) 79 (76-81) 83			opeen				Bħ	٩P	SENSITIVITY	SPECIFICITY			ACCURACY
50 97 (96-96) 62 (59-66) 71 (88-74) 96 (94-97) 79 600 pg/ml 96% 81% 73% 97% 86% 80 93 (91-96) 71 (88-74) 96 (94-97) 79 900 pg/ml 90% 85% 76% 94% 87% 100 90 (88-92) 76 (73-79) 79 (76-81) 89 (87-91) 83		10000			7.5.0	1	P9	ml		(96 pe	rcent confidence	e interval)	
Solution Solution			0.00				6	50	97 (96-96)	62 (69-66)	71 (68-74)	96 (94-97)	79
	1000 C	255556	52.9	a satas	100 (UE06115)	5,5,63							
1000 na(m) 0700 0000 7000 0100 0700 0700 125 07 10 10 - 027 80 1/8-837 87 184-887 83		100000	- 221			22 <u>2893</u> 3							
1000 pg/mi 67% 50% 76% 91% 67% 150 85 (82-86) 83 (90-85) 83 (90-85) 85 (83-86) 84	1000 pg/ml	87%	869	6 789	% 91%	87%							

Causes of lower positive predictive value of natriuretic peptides

Variable	Predictors of Elevated B-Type Natriuretic Peptide						
Demographics	Concentrations in Dyspheic Patients Without						
Age/10-y increase		2 I		1.0-1.6			
Medical history		n Analysis From t	0				
Chronic congestive heart fa	Not Prop	erly Multinational	Study				
Atrial fibrillation	0.0	3.3-11.0	3.1	1.4-6.7			
Hypertension	1.6	1.1-2.3					
Clinical findings							
O2 saturation (per 5% decrease)	1.2	1.1-1.4					
DVD	1.8	1.1-3.1					
Absence of wheezing	1.9	1.2-2.8					
Murmurs	2.4	1.5-3.9					
Rales	1.8	1.3-2.7					
Body mass index (per 5 kg/m ² decrease)	1.4	1.2-1.6	1.2	1.0-1.5			
Chest radiograph findings							
Cardiomegaly	3.2	1.9-5.3	2.0	1.0-4.1			
Pleural effusion	2.0	1.0-3.7					
Interstitial edema	2.5	1.1-5.8					
Blood value							
Creatinine (increase per mg/dL)	2.4	1.6-3.6					
Hemoglobin (decrease per g/dL)	1.3	1.2-1.4	1.2	1.1-1.4			
ECG abnormal	3.0	2.0-4.4					

European Heart Journal Advance Access published November 17, 2005

European Heart Journal doi:10.1093/eurheartj/ehi631

Clinical research

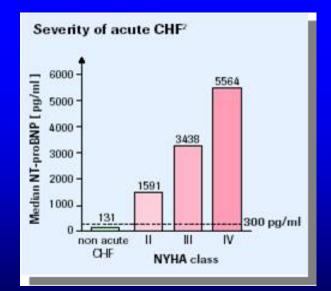
NT-proBNP testing for diagnosis and short-term prognosis in acute destabilized heart failure: an international pooled analysis of 1256 patients

The International Collaborative of NT-proBNP Study

James L. Januzzi^{1*†}, Roland van Kimmenade^{2†}, John Lainchbury³, Antoni Bayes-Genis⁴, Jordi Ordonez-Llanos⁵, Miguel Santalo-Bel⁶, Yigal M. Pinto², and Mark Richards³

¹ Cardiology Division, Massachusetts General Hospital, Yawkey 5984, 55 Fruit Street, Boston, MA 02114, USA; ² Cardiology Department, University Hospital, Maastricht, The Netherlands; ³ Christchurch Cardioendocrine Research Group, Department of Medicine, Christchurch School of Medicine and Health Sciences, Christchurch, New Zealand; ⁴ Cardiology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; ⁵ Biochemistry Service, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; and ⁶ Emergency Medicine, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain

ICON Study Group: James Januzzi, Aaron Baggish (Boston) Antoni Bayes-Genis (Barcelona) Roland RJ van Kimmenade, Yigal Pinto (Maastricht) A. Mark Richards, John Lainchbury (Christchurch)


MASSACHUSETTS GENERAL HOSPITAL HEART CENTER

 International NT-proBNP Collaboration data (acute setting):

- 300 pg/ml, age independent

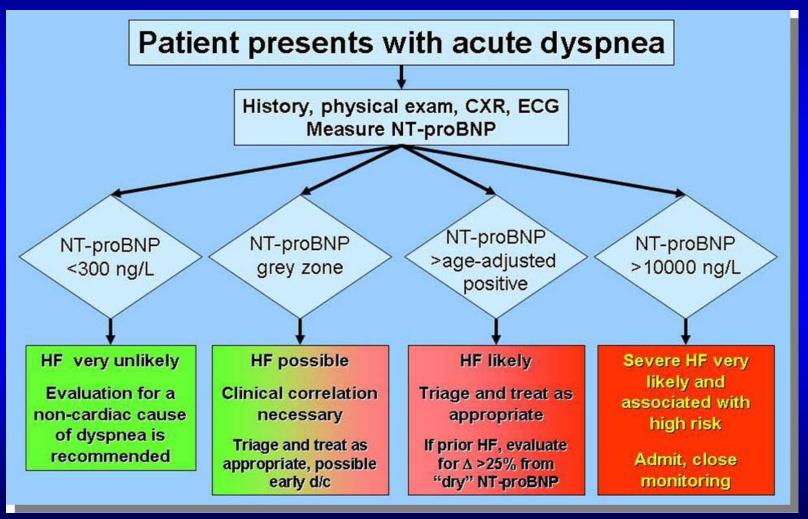
- 99% sensitive
- 60% specific
- <u>98% NPV</u>

Januzzi, et al, Eur H Journal 2005

 International NT-proBNP Collaboration data (acute setting):

To diagnose acute HF

Age strata	Optimal cut-point	Sensitivity	Specificity	PPV	NPV	Accuracy
All <50 years (n=183)	450 pg/ml	97%	93%	76%	99%	95%
All 50-75 years (n=554)	900 pg/ml	90%	82%	82%	88%	85%
All >75 years (n=519)	1800 pg/ml	85%	73%	92%	55%	83%
Overall		90%	84%	<u>88%</u>	66%	86%


*Very superior to single cut-point strategy in multivariable bootstrapping models

Januzzi, et al, Eur H Journal 2005

Logical use of natriuretic peptide values: it isn't black and white!!

Januzzi, et al, Am J Cardiol, 2008

MASSACHUSETTS GENERAL HOSPITAL HEART CENTER

Optimizing Natriuretic Peptide Use in Acute Diagnosis:

Not everything with a high natriuretic peptide level is HF!

How Not to Get **Burned** by Elevated B-type Natriuretic Peptide Levels: *Know the Differential Diagnosis*

- Unrecognized HF
- Prior HF
- LVH
- Valvular heart disease
- Atrial fibrillation
- Advancing age
- Myocarditis
- ACS
- Pulmonary hypertension

Baggish, et al, Crit Path Cardiol, 2004

- Anemia
- Pulmonary embolism
- Cardiac surgery
- Sleep apnea
- Critical illness
- Sepsis
- Burns
- Renal failure
- Toxic-metabolic insults

What Causes "False Negative" B-type Natriuretic Peptides?

- It happens, sometimes without explanation!
- Right heart failure
- Mild HF
- Chronic, more compensated HF (consider cut-points!)
- Non-systolic HF
- Obesity

Natriuretic Peptides: Major Clinical Utilities

- Acute patient evaluation
- Estimation of prognosis
- Monitoring therapy

AHA Stages

Disease severity

At risk for heart failure

Diabetes Coronary disease Hypertension

Stage B

Asymptomatic LV dysfunction

Prior MI Hypertension

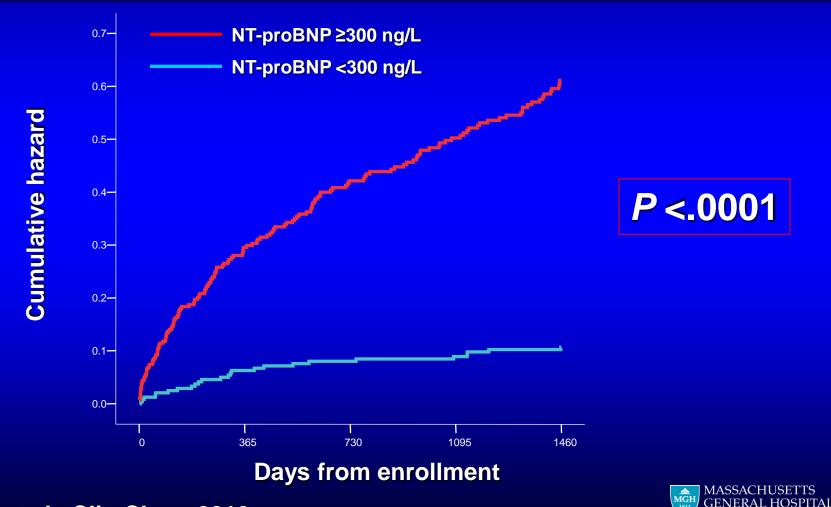
Stage C

Symptomatic heart failure

End-stage heart failure

Disease prevalence

Results: Bayesian information criterion


Predictors of mortality at 4 years among those with acute HF

Variable	BIC
Age	974.66
NT-proBNP	961.90
Tobacco use	953.35
hsCRP	947.72
No loop diuretic at D/C	945.44
Blood urea nitrogen	944.99
Creatinine clearance	941.43

Januzzi, et al., Clin Chem 2010

Cumulative Hazard: NT-proBNP

HEART CENTER

Januzzi, et al., Clin Chem 2010

Natriuretic Peptides: Major Clinical Utilities

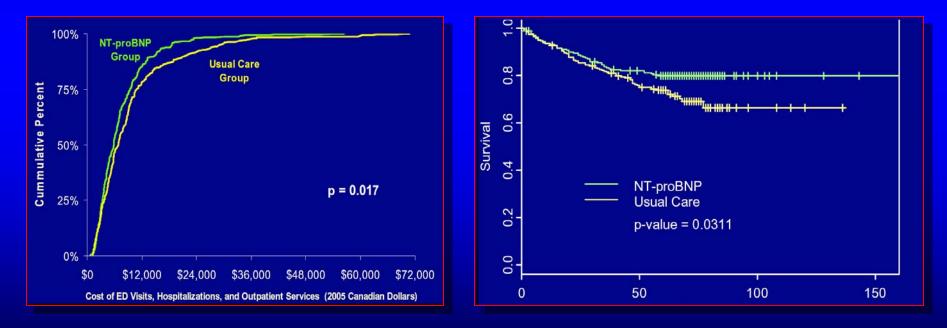
- Acute patient evaluation
- Estimation of prognosis
- Monitoring therapy

Why might natriuretic peptide testing assist with heart failure management?

✓ Earlier diagnosis

✓ Better triage

As a target of therapy?



Effect of Selective NT-proBNP Testing On Costs/Outcomes:

Results of the Randomized IMPROVE-CHF Trial

Effect of Selective NT-proBNP Testing on Utilization/Costs

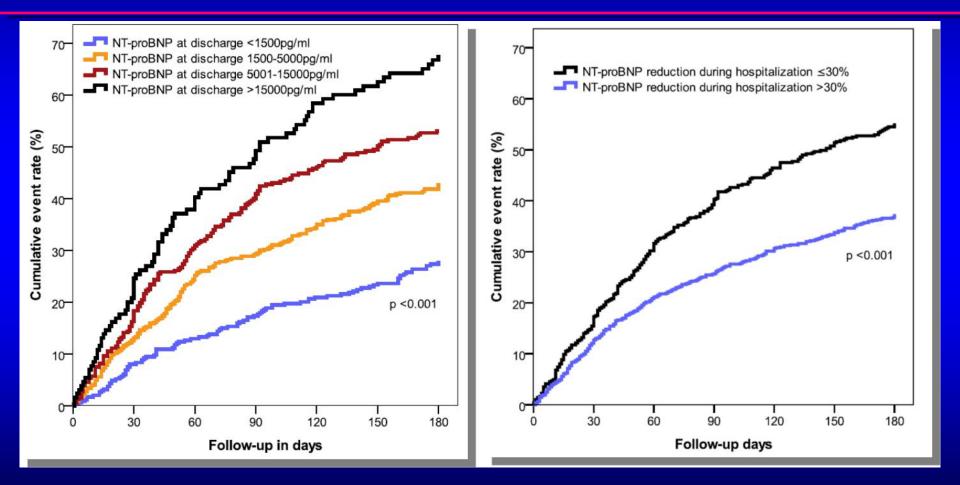
Effect of Selective NT-proBNP Testing on Outcomes

Moe, Howlatt, Januzzi, Zowall on behalf of the IMPROVE-CHF Investigators, 2007, Circulation

Why might natriuretic peptide testing assist with heart failure management?

Earlier diagnosis

• As a target of therapy?


Therapies with Effects on B-Type Natriuretic Peptide Levels

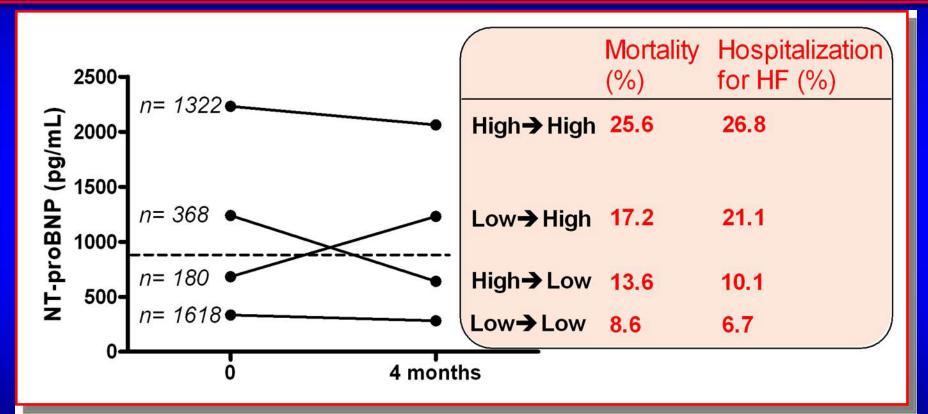
Therapy	Effect on NT-proBNP
Diuresis	\downarrow
ACE-I	
ARB	\checkmark
β-blockers	\downarrow
Aldosterone antagonists	\checkmark
BiV pacing	\checkmark
Exercise	\checkmark
Rate control of AF	\checkmark
BNP infusions	T T T Stry General Hosp

HEART CENTER

TAI.

Natriuretic peptide treatment response: Absolute target or % change?

Data courtesy of Yigal Pinto, MD



Recommended Protocol for NTproBNP Testing in Acute HF

- Baseline measurement for diagnosis
- Pre-discharge measurement for both 'dry' NT-proBNP estimation and to assess for treatment response:
 - If rise >30%: discharge delayed, 1 Rx
 If change <30%: possible discharge delay
 If fall >30%: discharge authorized

The Importance of Serial NT-proBNP Measurements for Prognostication in Chronic HF

Rationale for "guided" therapy

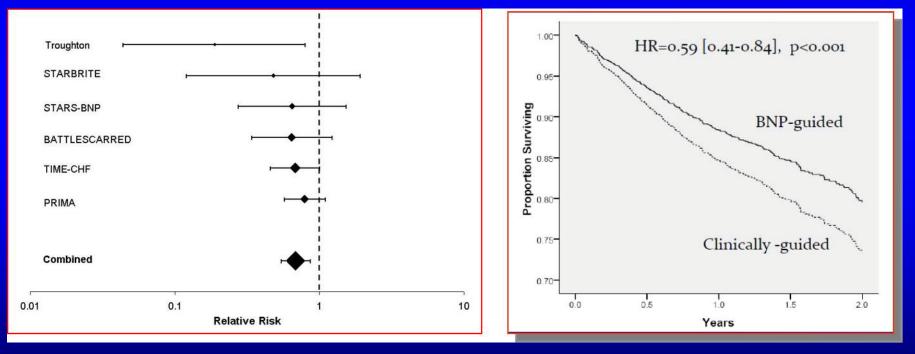
 Proactively identify those on an inadequate medical program

• *Reactively* identify those at high risk for impending complication

 Directly address the underlying biology of HF guided by tools that reflect it

Characteristics of 'guided therapy' trials

- Well tolerated
- More often up-titration of therapies in biomarker guided arm
- When a low target was selected and natriuretic peptide lowering was achieved, better outcomes were observed


Januzzi, Journal of Cardiac Failure, 2011

Guided therapy combined analyses

Meta analysis of publication data

Pooled patient data from all available trials

Felker et al, Am Heart Journal, 2009

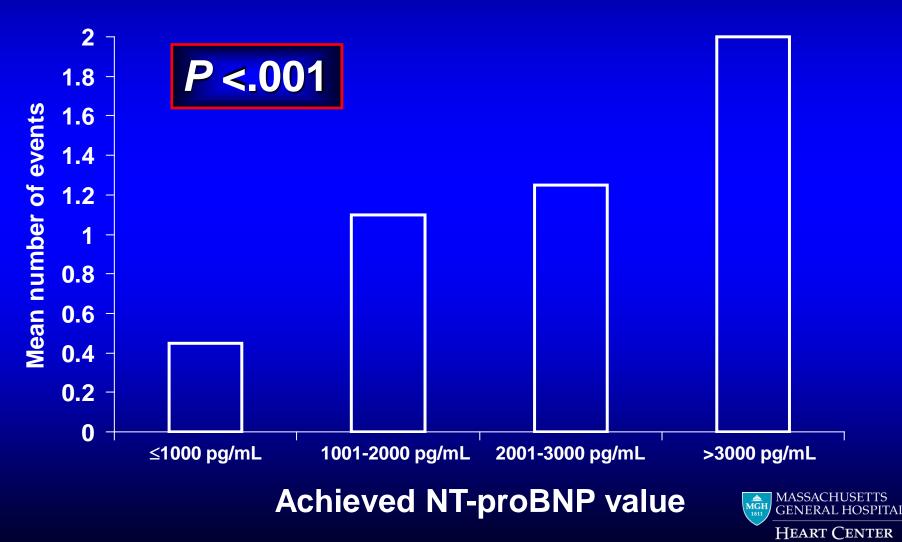
Troughton et al, ESC 2011

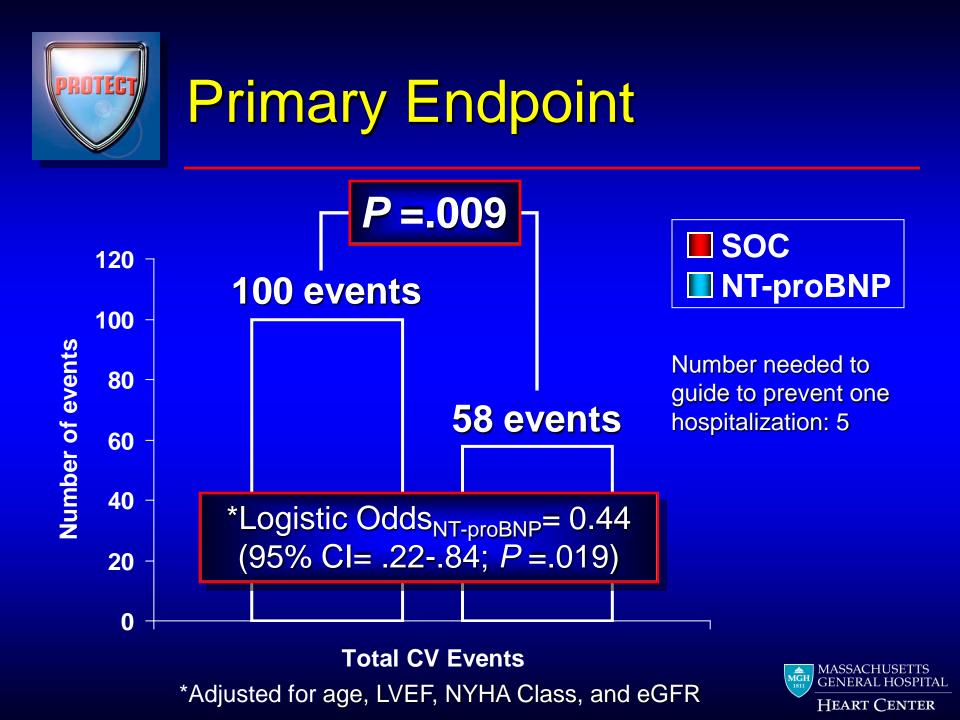
NT-proBNP Concentrations

	Baseline	Follow-up	P	
Overall	2118 [1122-3831]	1321 [554-3197]	.02	
By treatment allocation				
inemiserl	Baseline	Follow-up	P	
SOC	1946 [951-3488]	1844 [583-3603]	.61	
NT-proBNP	2344 [1193-4381]	1125 [369-2537]	.01	

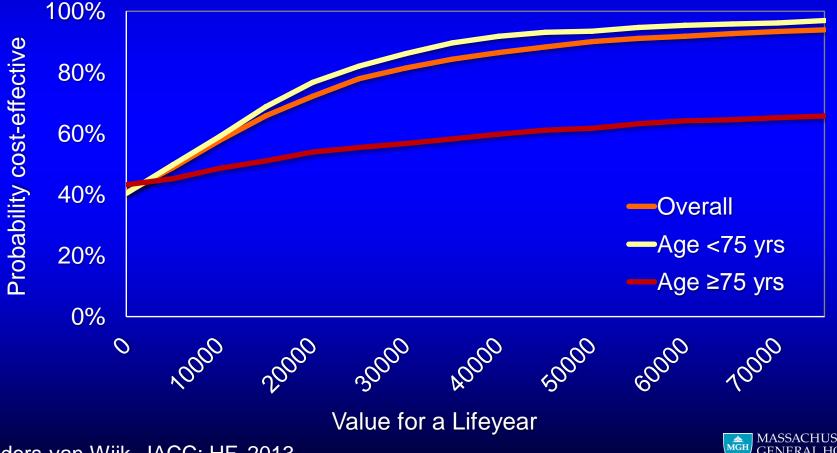
P = .40 for SOC baseline versus *NT*-proBNP baseline

NT-proBNP Concentrations


	Baseline	Follow-up	P		
Overall	2118 [1122-3831]	1321 [554-3197]	.02		
By treatment allocation					
Treatment	Baseline	Follow-up	Ρ		
SOC	1946 [951-3488]	1844 [583-3603]	.61		
NT-proBNP	2344 [1193-4381]	1125 [369-2537]	.01		


P = .03 for SOC follow-up versus NT-proBNP follow-up 44.3% of NT-proBNP subjects ≤1000 pg/mL MASSACHUSET GENERAL HOS

HEART CENTER


Events as a function of NT-proBNP

TIME-CHF Cost-Effectiveness

Acceptibility curves for LY's without residence costs

HEART CENTER

Sanders-van Wijk, JACC: HF, 2013

The clinical value of natriuretic peptide testing

James L. Januzzi, Jr, MD, FACC, FESC Associate Professor of Medicine Harvard Medical School Roman W. DeSanctis Endowed Clinical Scholar Director, Cardiac ICU Massachusetts General Hospital

